fbpx

Alloy steel pipes

Alloy steel pipe is a kind of seamless steel pipe, its performance is much higher than the general seamless steel pipe.

Alloy steel pipe is a kind of seamless steel pipe, its performance is much higher than the general seamless steel pipe, because this steel pipe inside containing Cr, high temperature resistance, low temperature, corrosion-resistant performance of other non-pipe joints not match, so the more extensive use of alloy tube in the petroleum, aerospace, chemical, electric power, boiler, military, and other industries.

ASTM A335 Chrome Moly Pipe

ASTM A335/ ASME SA335

Chrome Moly Pipe

Seamless ferritic Alloy-Steel Pipe for high temperature service.

astm a333 grade 6 seamless pipe 01

ASTM A333

Low temperature pipe

covers nominal (average) walled pipe almost exclusively in seamless.

astm a519 grade 1026 seamless tubing 01

ASTM A519

Mechanical tubing

either hot-finished or cold-finished.

astm a213 t22 alloy steel pipe 01

ASTM A213

Alloy tubes

widely used in high temperature services especially for the boiler and superheater.

en 10216 seamless steel tubes 02

EN 10216-1

Non alloy steel tubes

with specified room temperature properties.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel is a series of alloy which its main content is steel.

Alloy steel pipes stock

Our recognized inventory is complete with

astm a335 p5 alloy steel pipe 07
astm a335 p91 alloy pipe 03
astm a335 p22 alloy steel pipe 02
slider special alloy

Our mill integrating R & D, trade and manufacture

Special Alloy

They are extensively applied in the fields of oil service, petrochemical industry, national defense, nuclear industry, aviation and power generation, etc.

application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Learn More

Alloying Elements

Alloying ElementsEffect on the Properties
ChromiumIncreases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
NickelIncreases hardenability. Improves   toughness. Increases impact strength at low temperatures.
MolybdenumIncreases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
ManganeseIncreases hardenability. Combines   with sulfur to reduce its adverse effects.
VanadiumIncreases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
TitaniumStrongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
SiliconRemoves oxygen in steel making.   Improves toughness. Increases hardness ability
BoronIncreases hardenability. Produces   fine grain size.
AluminumForms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
CobaltIncreases heat and wear   resistance.
TungstenIncreases hardness at elevated   temperatures. Refines grain size.
Commonly used alloying elements and their effects are listed in the table given below.

Boiler tubes are used in heat exchange appliances in which the energy is transferred from one medium to the other.

Boiler tubes

Honed Tubes are ready to use for hydraulic cylinder applications without further ID processing.

Honed tubes

Q&A

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.

Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.