fbpx

LSAW pipe

LSAW (Longitudinal double submerge arc welding) carbon steel pipe is a type of SAW pipe made of steel plates that were hot rolled by JCOE or UOE forming technology.

Please send your inquiry by   sales@sunnysteel.com

Description

LSAW (Longitudinal double submerge arc welding) carbon steel pipe is a type of SAW pipe made of steel plates that were hot rolled by JCOE or UOE forming technology.

LSAW (Longitudinally Submerged Arc Welded Steel pipes) in leaflets plate as raw material, the steel plate in the mold or molding machine pressure (volume) into using double-sided submerged arc welding and flaring from production.

Features:

  • Large diameter steel pipes
  • Thick walls
  • High-Pressure resistance
  • Low-temperature resistance can only use one HS code to declare the pipe fitting. But the straight tubes can not be used with one HS code.

Standard

Standard Specification
ASTM A53 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
API 5L Specification for Line Pipe(Two levels PSL 1 and PSL 2 of seamless and welded steel pipes for use in pipeline transportation systems in the petroleum and natural gas industries.)
A252 Standard Specification for Welded and Seamless Steel Pipe Piles
A500 Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
A139 Standard Specification for Electric-Fusion (Arc)-Welded Steel Pipe (NPS 4 and Over)
A672 Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures
A691 Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures

Tolerance of Outside Diameter and Wall Thickness

Types Standard
SY/T5040-2000 SY/T5037-2000 SY/T9711.1-1977 ASTM A252 AWWA C200-97 API 5L PSL1
Tube end OD deviation ±0.5%D ±0.5%D -0.79mm-+2.38mm <±0.1%T <±0.1%T ±1.6mm
Wall thickness ±10.0%T D<508mm, ±12.5%T -8%T-+19.5%T <-12.5%T -8%T-+19.5%T 5.0mm<t<15.0mm, ±0.11=””
D>508mm, ±10.0%T T≥15.0mm, ±1.5mm

Chemical Composition and Mechanical Properties

Standard Grade Chemical Composition(max)% Mechanical Properties(min)
C Mn Si S P Yield Strength(Mpa) Tensile Strength(Mpa)
GB/T700-2006 A 0.22 1.4 0.35 0.05 0.045 235 370
B 0.2 1.4 0.35 0.045 0.045 235 370
C 0.17 1.4 0.35 0.04 0.04 235 370
D 0.17 1.4 0.35 0.035 0.035 235 370
GB/T1591-2009 A 0.2 1.7 0.5 0.035 0.035 345 470
B 0.2 1.7 0.5 0.03 0.03 345 470
C 0.2 1.7 0.5 0.03 0.03 345 470
BS En10025 S235JR 0.17 1.4 0.035 0.035 235 360
S275JR 0.21 1.5 0.035 0.035 275 410
S355JR 0.24 1.6 0.035 0.035 355 470
DIN 17100 ST37-2 0.2 0.05 0.05 225 340
ST44-2 0.21 0.05 0.05 265 410
ST52-3 0.2 1.6 0.55 0.04 0.04 345 490
JIS G3101 SS400 0.05 0.05 235 400
SS490 0.05 0.05 275 490
API 5L PSL1 A 0.22 0.9 0.03 0.03 210 335
B 0.26 1.2 0.03 0.03 245 415
X42 0.26 1.3 0.03 0.03 290 415
X46 0.26 1.4 0.03 0.03 320 435
X52 0.26 1.4 0.03 0.03 360 460
X56 0.26 1.1 0.03 0.03 390 490
X60 0.26 1.4 0.03 0.03 415 520
X65 0.26 1.45 0.03 0.03 450 535
X70 0.26 1.65 0.03 0.03 585 570

Q345B steel polishing method

Polishing means a processing method by the action of mechanical, chemical or electrochemical, lower the q345b steel pipe surface roughness, to obtain a bright and smooth surface, and surface modification process making use of a flexible polishing tools and polishing abrasive particles or other media on the workpiece.

Q345B steel polishing method often used Polishing means a processing method by the action of mechanical, chemical or electrochemical, lower the q345b steel pipe surface roughness, to obtain a bright and smooth surface, and surface modification process making use of a flexible polishing tools and polishing abrasive particles or other media on the workpiece.

Polishing can not improve the dimensional accuracy or geometrical shape accuracy of q345b steel pipe, but can obtain a smooth surface or specular gloss, sometimes to be used to eliminate gloss. Usually buff as a polishing tool. Buff is generally made with multilayer canvas, leather crafted stacked, on both sides clamped with a metal circular plate, its rim coated abrasive mixture of powder and oil and other uniform.

(1) Mechanical q345b steel polishing surface corrosion resistance. As we know, the mechanical polishing q345b steel corrosion resistance is significantly lower than the electrochemical polishing q345b steel pipe, mainly due to the cold mechanical q345b polishing surface hardened steel deformed layer high corrosion rate, coupled with in the mechanical polishing process, inevitably have abrasive particles embedded in the deformable layer, the corrosion rate of deformation layer increased greatly.

(2) electrochemical q345b steel polishing makes the metal surface hardening layer easy to be dissolved, and can lower the surface activity, what’s more, there is a continuous passivation film formed on the surface, significantly improved the corrosion resistance.

Mechanical Properties of Chinese low alloy steel: Q345B

Q345B steel is a Chinese standardized low alloy, medium tensile strength steel made with a hot-rolling process, and is used for a number of manufacturing purposes. It is a steel with less than 0.2 percent of its composition made up of carbon, less than 0.55 percent of its composition made of silicon and several impurities (mostly sulfur, chromium and nickel). This particular grade of steel is a ‘general purpose’ manufacturing steel in construction equipment field, such as Q345B is basic mateiral of making excavator bucket and long boom arms.

Mechnical property for Q345B low alloy structural steel:tensile strength yield strength Q345B

1, Yield Strength

A yield strength or yield point is the material property defined as the stress at which a material begins to deform plastically. Prior to the yield point the material will deform elastically and will return to its original shape when the applied stress is removed, Yield strength of Q345B is 345 MegaPascals. Like most steels of its grade, it suffers elongation before it pulls apart, typically at 20-21 percent of its initial length.

2, Tensile strength

The tensile strength of a material is the maximum amount of tensile stress that it can take before failure, for example breaking. Steel tensile strength is expressed in units of force divided by cross sectional area; in the Metric system, this unit is known as the Pascal. One Pascal is a Newton (the force needed to accelerate a one kilogram object to a velocity of one meter per second) per square meter. The tensile strength of Q345B steel is rated at 470 to 660 MegaPascals (where mega is million).

Thickness (mm)
Q345B ≤ 16 > 16 ≤ 35 > 35 ≤ 50 >50
Yield strength (≥Mpa) 345 325 295 275
Tensile strength (Mpa) 470-630

Steel tensile strength is expressed in units of force divided by cross sectional area; in the Metric system, this unit is known as the Pascal. One Pascal is a Newton (the force needed to accelerate a one kilogram object to a velocity of one meter per second) per square meter. The tensile strength of Q345B steel is rated at 470 to 630 MegaPascals (where mega is million) and a yield strength (where the material starts to thin and pull like taffy) at 345 MegaPascals. Like most steels of its grade, it suffers elongation before it pulls apart, typically at 20-21 percent of its initial length.

Chemical composition for Q345B low alloy structural steel (Heat Analysis Max%)
Main chemical elements composition of Q345B
C Si Mn P S V Nb Ti
0.20 0.55 1.00-1.60 0.040 0.040 0.02-0.15 0.015-0.060 0.02-0.20

The equivalent steel grade with Q345B are EN 10025-2 S355JR,ASTM A572/A572 A572 Grade 50 and DIN 17100 St52-3.

The major benefit of this grade of steel is its mild temper. It’s easy to form and easy to weld.

LSAW pipes are mainly used as long distance transportation pipeline for oil, gas, liquid coal etc. on land and offshore.

And also can be applied as construction pipes on offshore platform, power station, petrochemistry and city construction etc.


LSAW pipes Production Range

LSAW (Longitudinally Submerged Arc Welded Steel pipes) in leaflets plate as raw material, the steel plate in the mold or molding machine pressure (volume) into using double-sided submerged arc welding and flaring from production.

  • Legnth:8-12.15m
  • Material: API 5L Gr.B-X80
  • Standard: API spec. 5L; GB9711.1-97
Range of LSAW pipes applied in construction

Range of roller pipes:

  • Outer diameter: Ф1200-3800mm
  • Wall thickness: 12-120mm
  • Unit length (max) 3.2m.

Note: The specification in the table is available to Q345.

Remarks:non-standard dimensions pipes can be produced to customer specifications.

Range of Roller Pipes
Number Technical parameter

Unit

HQW11s-120X3200

1 Material yield limited Mpa 245 345 345
2 Wall thickness mm 120 100 110
3 Maximum pre-bending thickness mm 110 90 100
4 Maximum width of steel plate mm 3200 3200 3200
5 Minimum diameter of fully loaded rolling steel plate mm 2500 1600 1600

Range of roller pipes:

  • Outer diameter: Ф1200-3800mm
  • Wall thickness: 12-120mm
  • Unit length (max) 3.2m.

The developing trend of LSAW steel pipe

lsaw steel pipe trucking

The developing trend of LSAW steel pipe in the future:
  • in terms of the onshore gas,with the large diameter LSAW steel pipe, its single-tube gas transmission capacity could reach the level of 50 billion cubic meters / year, pipe diameter can reach ф1422mm, steel grade achieve X80, and gas transmission pressure can reach 12MPa;
  • in terms of the ocean steel pipe, the gas pipeline develops towards the direction of deep-sea pipeline (> 1500 meters), marine structural tube towards the direction of high-intensity, large wall thickness, for example ф610mm×31.8mm, X65 grade;
  • in terms of business management, plate and pipe integration (steelmaking – Continuous Casting – rolled plate – pipe manufacturing) is the future development trend, for example in Japan and India plate and strip production line is always equipped with a welded steel pipe unit;
  • entering the market of high-grade structural tubes, this is an important question to be considered by the LSAW steel pipe production line manufacturer when deploying the device, so it is necessary to set the preheating device before pre-welding, or set the heat treatment process and so on;
  • in marketing, in addition to oil and gas pipelines, there is slurry pipelines;
  • anti HIC tube and anti deformed tube are with a considerable market prospect, can be used to transport acid gases and improve the ability against external environmental damage in harsh geological conditions (landslides, mudslides, earthquakes).

Application of LSAW pipe

LSAW pipe is used to convey low-pressure liquid or high-pressure petroleum or natural gas and can also be used widely in structural supports or foundations.

lsaw pipe application01

Base on its advantage of high reliability and safety performance, the LSAW pipe is widely used in various pipelines engineering and construction, even under the most severe condition, and also can be used in engineering of chemical industry, electric power, irrigation, construction and piling etc.

lsaw pipe application02

LSAW pipes for oil and gas pipeline

The advantage for the LSAW type is that they could produce more thick wall thickness of pipes, maximum to 120 mm.


Our technical support for ERW steel pipe , SSAW steel pipe & LSAW stel pipe

Gas pipeline by pipe process can be divided into seamless steel pipe (SMLS), ERW steel pipe SSW steel pipe ,LSAW steel pipe ,HFW steel pipe etc…

Mainly as a field gathering pipe and internal high-pressure natural gas pipeline of small-caliber, long-distance pipelines for oil and gas a small number, the vast majority of long-distance pipeline is the use of high-frequency straight seam welded pipe (ERW), spiral submerged arc welded pipe (SSAW), LSAW steel pipe (LSAW) three.

The following table shows the characteristics of several steel process and quality performance comparison:

Straight seam high frequency welded pipe (ERW steel pipe) by welding and induction welding is divided into different exposure to welding in two forms, using broadband hot-rolled coils as raw materials, pre-curved, continuous molding, welding, heat treatment, sizing, straightening, cutting and other processes, and spiral welded pipe weld compared to the short, high dimensional accuracy, uniform thickness, surface quality, the advantages of higher pressure, but the drawback is that only produce small-caliber thin-walled tube, easy to produce weldsgray leaf spot, not fusion, groove-shaped corrosion defects. At present more extensive application areas of the city gas, crude oil transportation and so on.

Spiral submerged arc welded pipe (SSAW steel pipe) is the strip volume control when the forward direction and forming a molding pipe centerline angle (adjustable), side molding edge welding, the weld into a spiral, the advantage of the same specifications of the strip can beproduction of a variety of diameters of pipe, meet a wider range of raw materials, welds can avoid the main stress, the force is better, the disadvantage is poor geometry,the weld seam length compared to the straight pipe length, easy to produce cracks, pores, slag, welding and other welding defects side, welding stress was tensile stress state.General long-distance gas pipeline design specification spiral submerged arc welded pipe can only be used for Class 3, Class 4 area.

Foreign raw materials will be changed to improve this process steel, so that separate forming and welding, the welding and lean pre-, post-weld cold-expanding, then the quality of welding close to the UOE pipe, currently there is no such process,is the spiralFactory directions for improvement. “Natural Gas” is still used by the traditional spiral process of production, but the tube side of the expander.United States, Japan and Germany in general negative SSAW, that trunk should not use SSAW; Canada and Italy, some use SSAW, Russia, a small amount of use SSAW, and have developed a very strict additional conditions, due to historical reasons, most still use the main trunk domestic SSAW. LSAW pipe (LSAW) is a single plate as raw material, steel in the mold or molding machine pressure (volume) into the tube, using double-sided submerged arc welding method and Expanding from the produce.

In the construction of high-strength, high toughness, high-quality long-distance gas pipeline, most of the required large diameter thick wall steel pipe LSAW pipe.According to API standards, in large oil and gas pipelines, when through the alpine zone, sea, cities and other densely populated areas Class 1, Class 2 areas, LSAW pipe is the only designated suitable tube.By forming different ways can be divided into:

  • UOE welded pipe: sheet steel at the edge of the pre-bend, the U shape, O shape, welded inside and outside welding, mechanical cold Expanding processes;
  • JCOE pipe: ie “JCOE” pre-welding, forming, welding and other processes by the cold expander;
  • HME pipe: the mandrel rolling basis over the “CCO” forming, welding and other processes by the cold expander.

The wide range of product specifications, weld toughness, ductility, good uniformity and dense, with a large diameter, wall thickness, high pressure, low temperature corrosion resistance and other advantages.

Standard

Welded pipes specification and size

Product NameExecutive StandardDimension (mm)Steel Code / Steel Grade
Electric-Resistance-Welded Steel PipesASTM A13542.2-114.3 x 2.11-2.63A
Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater TubesASTM A17842.2-114.3 x 2.11-2.63A, C,D
ERW and Hot-dip Galvanized Steel PipesASTM A5321.3-273 x 2.11-12.7A, B
Pipes for Piling UsageASTM A252219.1-508 x 3.6-12.7Gr2, Gr3
Tubes for General Structural PurposeASTM A50021.3-273 x 2.11-12.7Carbon Steel
Square Pipes for General Structural PurposeASTM A50025 x 25-160 x 160 x 1.2-8.0Carbon Steel
Mechanical tubingASTM A51321.3-273 x 2.11-12.7carbon and alloy steel
Screwed and Socketed Steel TubesBS 138721.4-113.9 x 2-3.6Carbon Steel
Scaffolding PipesEN 3948.3 x 3.2-4Carbon Steel
Carbon Steel Tubes for General Structure PurposeJIS G344421.7-216.3 x 2.0-6.0Carbon Steel
Carbon Steel Tubes for Machine Structure PurposeJIS G3445 15-76 x 0.7-3.0STKM11A, STKM13A
Carbon Steel Pipes for Ordinary PipingJIS G345221.9-216.3 x 2.8-5.8Carbon Steel
Carbon Steel Pipes for Pressure ServiceJIS G345421.7-216.3 x 2.8-7.1Carbon Steel
Carbon Steel Rigid Steel ConduitsJIS G830521-113.4 x 1.2-3.5G16-G104, C19-C75, E19-E75
Carbon Steel Rectangular Pipes for General StructureJIS G346616 x 16-150 x 150 x 0.7-6Carbon Steel

Coating

Pipeline coating is the most consistent and successful solution for protecting ERW pipes from corrosion, from moisture, other harmful chemicals.

Anti-corrosion steel pipe is processed through the preservation process, which can effectively prevent or slow down the process in the transport and use of chemical or electrochemical corrosion reaction of steel pipe.

Therefore pipe anti-corrosion layer is an important barrier to prevent soil erosion. A well-known foreign scholar put forward” 3PE france protective layer”, so far, anti-corrosion methods is widely used.

Coated pipes offer high resistance to corrosion on pipes and provide many benefits such as:

1. Increased Flow Capacity – A coating on pipes helps provide a smoother surface thus improving gas and liquid flow within pipes.

2. Reduced Cost – The pipeline coating increases the pipes durability so they can be deployed with minimum maintenance cost even in the harshest environments.

3. Lower energy usage – Various studies have shown that pipelines that are internally coated use less energy for pumping and compression of products through pipes. This helps in increased saving over time.

4. Clean delivery of products – The inhibitors used for the protection products can also be minimized by the use of coated pipes for delivery of products.

Thus, coating of pipelines can help you in reducing your maintenance cost and at the same time providing a corrosion free reliable protection.

Basic functions of erw pipe coating

  1. making the surface of ERW steel pipes free from electrochemical corrosion of the soil medium, the basic physics of bacterial corrosion protection.
  2. resisting the move of the soil medium creep stress, static stress and abrasion force method and structure of the basic machinery protection.

The basic principles of urban gas pipeline coating selection:

  • good insulating and mechanical properties;
  • good resistance to cathodic disbondment performance;
  • good resistance to water, gas permeability;
  • good chemical resistance soaking performance and anti-aging properties;
  • resistance to low temperature and high temperature performance;
  • easy mending and mending;
  • at reasonable prices.

Types of coating:

Coating Specifications

2.1.External Coating

2.1.1 External Epoxy Coating

  • API RP 5L2 Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service.
  • CAN/CSA-Z245.20 Standard for External Fusion Bond Epoxy Coating for Steel Pipe
  • AS 3862 Standard Specification for External Fusion-Bonded Epoxy Coating for Steel Pipes
  • AWWA C210 Standard for Liquid-Epoxy Coating Systems for the Interior and Exterior of Steel Water Pipelines
  • AWWA C213 Standard for Fusion Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines.
  • DEP 31.40.30.32-Gen TECHNICAL SPECIFICATION FOR EXTERNAL FUSION-BONDED EPOXY POWDER COATINGFOR LINE PIPE
  • NFA 49-710 Standard Specification for External FBE layered Coating
  • ISO 21809-2:2007, Petroleum and natural gas industries-External coatings for buried or submerged pipelines used in pipeline transportation systems-Part 2:
  • Fusion-bonded epoxy coatings
  • NACE RP0394 – National Association of Corrosion Engineers Standard Recommended Practice, Application, Performance, and Quality Control of Plant Applied, Fusion Bonded Epoxy External Pipe Coating.
  • NACPA 12-78 – National Association of Pipe Coating Applicators External Application Procedure for Plant Applied fusion Bonded Epoxy (FBE) to Steel Pipe.
  • SAES-H-002 Internal and External Coatings for Steel Pipelines and Piping
  • 09-SAMSS-089 Shop-Applied External FBE Coating
  • 09-SAMSS-091 Shop-Applied Internal FBE Coatings

2.1.2 Polyethylene Coating

  • CAN/CSA Z245.21 External Polyethylene Coating for Pipe
  • DIN 30670 Polyethylene Sheathing of Steel Tubes and of Steel Shaped Fittings
  • NFA 49-710 External Three-Layer Polyethylene Based Coating, Application by Extrusion
  • DNV-RP-F106 Factory Applied External Pipeline Coatings For Corrosion Control
  • AS/NZS 1518 External Extruded High-Density Polyethylene Coating System for Pipes
  • ISO 21809-1 Petroleum and natural gas industries — External coatings for buried or submerged pipelines used in pipeline transportation systems – Part 1: Polyolefin coatings (3- layer PE and 3- layer PP)
  • ISO 21809-4:2009, Petroleum and natural gas industries -External coatings for buried or submerged pipelines used in pipeline transportation systems-Part 4: Polyethylene Coatings (2-layer PE)
  • DEP 31.40.30.31-Gen. TECHNICAL SPECIFICATION FOR EXTERNAL POLYETHYLENE AND POLYPROPYLENE COATING FOR LINE PIPE
  • IPS-G-TP-335 Material and Construction Standard for Three Layer Polyethylene Coating System
  • NFA 49-710 External 3 layer Polyethylene Coating
  • PETROBRAS’ ET-200.03 Engineering Specification (“Piping Materials for Production and Process Facilities”) for using low density linear polyethylene in carbon steel piping, as to appendix 13 of such specification.
  • 09-SAMSS-113 External Renovation Coating for Buried Pipelines and Piping (APCS-113)
  • UNI 9099-DIN 30670 Polyethylene Coating Applied by Extrusion

2.1.3 Polypropylene Coating

  • DIN30678 Polypropylene Sheathing of Steel Tubes and of Steel Shaped Fittings
  • EN 10286 Steel tubes and fittings for onshore and offshore pipelines –External three layer extruded polypropylene based coatings.
  • NFA 49-711 External Three-Layer Polypropylene Based Coating, Application by Extrusion
  • 09-SAMSS-114 Shop-Applied Extruded, Three-Layer Polypropylene External Coatings for Line Pipe

2.1.4 Polyurethane Coating

  • AWWA C222-99: Polyurethane Coatings for the Interior and Exterior of Steel Water Pipe and Fittings
  • BS 5493- Polyurethane Coating
  • DIN 30677.2 polyurethane Insulation of the fittings
  • EN 10290- External Liquid Applied Polyurethane Coatings

2.1.5 Polyolefin Coating

  • AWWA C225-03: Fused Polyolefin Coating Systems for the Exterior of Steel Water Pipelines
  • AWWA C215-99: Extruded Polyolefin Coatings for the Exterior of Steel Water Pipelines
  • AWWA C216-00 Standard for Heat-Shrinkable Cross-Linked Polyolefin Coatings for the Exterior of Special Sections, Connections, and Fitting for the Steel Water Pipelines
  • AWWA C224 – 01: Two-layer Nylon-11 Based Polyamide Coating System for Interior and Exterior of Steel Water Pipe and Fittings
  • AWWA C225 – 03: Fused Polyolefin Coating Systems for the Exterior of Steel Water Pipelines

2.1.6 Tape Coating

  • ISO 21809-3:2008, Petroleum and natural gas industries-External coatings for buried or submerged pipelines used in pipeline transportation systems-Part 3: Field joint coatings
  • AWWA C209-00: Standard for Cold-Applied Tape Coatings for the Exterior of Special Sections, Connections, and Fittings for Steel Water Pipelines
  • AWWA C214-00 Standard for Tape Coating Systems for the Exterior of the Steel Water Pipelines
  • AWWA C217-99 Standard for Cold-Applied Petrolatum Tape and Petroleum Wax Tape Coatings for the Exterior for Special Sections, Connections, and Fittings for Buried/Submerged Steel Water Pipelines
  • AWWA C218-02 Standard for Coating the Exterior of Aboveground Steel Water Pipelines and Fittings
  • AWWA C224-01: Two-layer Nylon-11 Based Polyamide Coating System for Interior and Exterior of Steel Water Pipe and Fittings
  • EN 12068 – DIN 30672 STANDARD-POLYETHYLENE SELF ADHESIVE TAPES

2.1.7 Bitumen Coating

  • DIN 30673 Bitumen coatings and linings for steel pipes, fittings and vessels.
  • BS 534

2.1.8 Coal-Tar Enamel Coating

  • AWWA C-203 Coal-Tar Protective Coatings and Linings for Steel Water Pipelines-Enamel and Tape-Hot-Applied
  • AWWA C205 Cement Mortar Protective Lining and Coating for Steel Water Pipe – 4 inch (100 mm) and Larger- Shop Applied
  • BS 534

2.1.9 Concrete Weighted Coating

  • DNV-OS-F101 Submarine Pipeline System
  • ASTM C171 Specification for Sheet Material for Coating Concrete
  • BS EN 12620 Aggregates for Concrete
  • ISO 21809-5:2009, Petroleum and natural gas industries -External coatings for buried or submerged pipelines used in pipeline transportation systems – Part

5:External concrete coating.

  • ASTM C42 Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete
  • ASTM C642 Standard Test Method for Specific Gravity, Absorption and Voids in Hardened Concrete
  • ASTM C87 Standard Test Method for Effect of Impurities in Fine Aggregate on Strength of Mortar BS 1881 Methods of Testing Concrete
  • BS 3148 Methods of Test for Water for Making Concrete
  • BS 4482 Hard Drawn Mild Steel Wire for the Reinforcement of Concrete
  • BS 4483 Specification for Steel Fabric for the Reinforcement of Concrete
  • BS 4449 Specification for Carbon Steel Bars for Reinforcement of Concrete
  • ISO 4012 Determination of Compressive Strength of Test Specimen

2.1.10 Marine Coating

  • EN ISO 12944:1998 – Paints & Varnishes – Corrosion Protection of Steel Structures by protective paint system (parts 1 – 8)
  • ISO 20340:2009 Paints and varnishes – Performance requirements for protective paint systems for offshore and related structures
  • ISO 15741 Paints and varnishes-Friction-reduction coatings for the interior of on- and offshore pipelines for non-corrosive gases

2.1.11 Other specification

  • British Gas BGC/PS/CM1,
  • BGC/PWS/CM2
  • GAZ de France R 09
  • NACE RP 0181
  • NF A 49-706
  • TS 5140
  • TS 5139

2.2. Lining

2.2.1 Epoxy Lining

  • AWWA C210: Liquid-Epoxy Coating Systems for the Interior and Exterior of Steel Water Pipelines
  • API RP512 or NFA 49-709 Internal can be epoxy 80 microns
  • TS EN 10289
  • NFA 49708 Recommended Practice for Internal Coating of Line Pipe

2.2.2 Bitumen Lining

  • DIN 30673 Bitumen coatings and linings for steel pipes, fittings and vessels
  • UNI-ISO 5256/87 STANDARD-BITUMEN COATING
  • BS 534

2.2.3 Cement Mortar Lining

  • AS/NZS 1516 Cement Mortar Lining of Pipelines In Situ
  • AWWA C203-02: Coal-Tar Protective Coatings & Linings for Steel Water Pipelines, Enamel & Tape, Hot-pap. (Incl. add. C203a-99)
  • AWWA C205-00: Cement-Mortar Protective Lining and Coating for Steel Water Pipe- 4 In. (100 mm) and Larger-Shop application
  • AWWA C602 Standard for Cement-Mortar Lining of Water Pipelines – 4 inch (100 mm) and Larger – In Place
  • BS 534

2.2.4 Shop Cement Lined Piping

  • AWWA C205,C104,C602
  • DIN 2614
  • British Standard BS 534
  • British Petroleum GS 106-1
  • Shell DEP 30.48.30.31-Gen.
  • Saudi Aramco 01-SAMSS-005
  • KNPC ENG STD 87C1
  • API RP 10E

Pipe Coating Products

  • Fusion Bonded Epoxy – Fusion Bond Epoxy is a powder epoxy thermosetting coating applied for anticorrosion protection to steel pipelines. The pipe is first blast cleaned and heated. Then epoxy powder is spray applied by electrostatic guns to melt and form a uniform layer that hardens within a minute from application. Utilizing industry accepted materials supplied by manufacturers such as 3M, DuPont, and Valspar, the facility can apply FBE in a wide range of thickness to cost effectively meet any project specifications.
  • Fusion Bonded Epoxy with Abrasion Resistance Overcoating (FBE/ARO) – Utilizing two completely separate powder systems, the facility can produce FBE with an ARO at unprecedented processing speeds using industry accepted materials such as 3M 6352, DuPont 7-2610, and Lilly 2040.
  • Fusion Bonded Epoxy with High Temperature Resistant Overcoating – Utilizing two completely separate powder systems, the facility can produce FBE with a high operating temperature resistant overcoating such as DuPont’s Nap-Gard Gold and 3M’s 6258.
  • Fusion Bonded Epoxy with Zap-Wrap Overcoating – The facility is capable of processing line pipe with connections and of applying the Zap-Wrap abrasion resistance overcoating to the ends of each pipe.

Three Layer Polyethylene (3LPE)

To improve anticorrosion performance and adhesion, an additional layer of epoxy primer is sprayed onto pipe surfaces prior to the adhesive layer and Polyethylene top layer application. Three Layer Polyethylene is suitable for service temperatures from 60°C to 80°C (85°C peaks). Typical coating thickness is from 1-2 mm to 3-5 mm.

Three Layer Polypropylene (3LPP)

If a wider service temperature range and high stiffness is required, adhesive and top layers, applied over primer layer, are based on polypropylene instead of polyethylene. Three Layer Polypropylene is suitable for service temperatures up to 135 °C (140°C peaks). Typical coating thickness is from 1-2 mm to 3-5 mm.

Three Layer Polypropylene and Polyethylene

Three Layer applications involve a thermoplastic coating applied to steel pipelines as a form of anticorrosion protection. This mechanical resistance is appropriate when the risk of particularly severe coating damages exist. The Three Layer process involved several steps. First, the pipe surface is blast cleaned to remove any external residue from the mill or storage. It is then heated and sprayed with a Fusion Bond Epoxy (FBE) primer followed by the application of an adhesive copolymer and polyolefin polymers that are wrap extruded, one over the other.

Field applied products

  • 3M: SK 134, SK6233, SK6352 Toughkote, SK 314, SK 323, SK 206N, SK 226N, SK 6251 DualKote SK-6171, SK 206P, SK226P,
  • 3M Internal Coatings: Coupon EP2306HP
  • DuPont: 7-2500, 7-2501, 7-2502, 7-2508, 7-2514, 7-2803, 7-2504 Nap Gard Gold 7-2504, Nap Rock: 7-2610, 7-2617 FBE Powders
  • DuPont: Repair Kits; 7-1631, 7-1677, 7-1862, 7-1851
  • DuPont Internal Coatings: 7-0008, 7-0010, 7-0014, 7-0009SGR, 7-0009LGR, 7-2530, 7-2534, 7-2509
  • Akzo Nobel: FBE – Fusion Bond Epoxy
  • Internline 876 Seal Coat
  • Hampel: 85448,97840
  • Denso: 7200, 7900 High Service Temperature Coatings
  • Internal Liquid Epoxy: Powercrete Superflow

Delivery

FAQs

Advantage of ERW pipe

The alloy content of the coil is often lower than similar grades of steel plate, improving the weldability of the spiral welded pipe. Due to the rolling direction of spiral welded pipe coil is not perpendicular to the pipe axis direction, the crack resistance of the spiral welded pipe materials.

Inquiry

Need to inquire about our products? Fill out the form below and our staff will be in touch!

Contact Form Demo

FAQ

Q: How long is your delivery time?
A: The delivery time of customized products is generally 25 35 days, and non customized products are generally shipped within 24 hours after payment.

Q: Do you provide samples? Is it free?
A: If the value of the sample is low, we will provide it for free, but the freight needs to be paid by the customer. But for some high value samples, we need to charge a fee.

Q: What are your payment terms?
A: T/T 30% as the deposit,The balance payment is paid in full before shipment

Q: What is the packaging and transportation form?
A: Non steaming wooden box and iron frame packaging. Special packaging is available according to customer needs. The transportation is mainly by sea.

Q: What is your minimum order quantity?
A: There is no minimum order quantity requirement. Customized products are tailor made according to the drawings provided by the customer.