Our team is highly trained and experienced in servicing and producing all types of steel supplies. Need help or have a question?
sales@abrasionresistantpipe.com
Tel.: +8621-3378-0199
Our team is highly trained and experienced in servicing and producing all types of steel supplies. Need help or have a question?
sales@abrasionresistantpipe.com
Tel.: +8621-3378-0199
SA210A1 is a Seamless medium carbon steel Boiler Tube used in super heater, heat exchangers, condensers, marine application, refineries, paper pulping, petrochemical applications, pressure vessels, and general engineering applications.
SA210A1 is a Seamless medium carbon steel Boiler Tube used in super heater, heat exchangers, condensers, marine application, refineries, paper pulping, petrochemical applications, pressure vessels, and general engineering applications.
ASTM A210/ASME SA210 standard specification for seamless medium-carbon steel boiler and superheater tubes. Seamless medium carbon steel pipe for boiler tube and boiler flue pipe, including a minimum wall thickness of the security side, the dome and the support tube and superheater tubes. This specification covers seamless medium-carbon steel boiler and superheater tubes. The specification also covers minimum-wall-thickness, tubing sizes, boiler flues including safe ends, arch and stay tubes. The specification provides tensile and hardness properties but only applicable to certain size limitations. Material manufacturing shall be killed. Tubes shall be made by seamless process, marked as either hot-finished or cold-finished. Surface condition shall be specifically stated in the order. Chemical composition shall conform to the requirements. Elemental composition other than listed here shall not be permitted. Tension test, flattening test, flaring test, hardness test, hydrostatic or nondestructive electric test shall be made on specimens. Superheater tubes shall be formed without defects and shall withstand expansion, beading, forging, welding, and bending.
Grade | C(Max) | Mn | Si(Min) | P(Max) | S(Max) |
---|---|---|---|---|---|
A1 | 0.27 | Max.0.93 | 0.1 | 0.035 | 0.035 |
C | 0.35 | 0.29~1.06 | 0.1 | 0.035 | 0.035 |
Grade | Tensile Strength(Mpa) | Yield Strength(Mpa) | Elongation (%) |
---|---|---|---|
A1 | ≥ 415 | ≥ 255 | ≥ 30 |
C | ≥ 485 | ≥ 275 | ≥ 30 |
ASTM A210 grade A-1 is a type of ASTM A210 steel. The graph bars on the material properties cards below compare ASTM A210 grade A-1 to: wrought carbon or non-alloy steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it’s 50% of the highest, and so on.
ASTM A210 grade C is a type of ASTM A210 steel. The graph bars on the material properties cards below compare ASTM A210 grade C to: wrought carbon or non-alloy steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it’s 50% of the highest, and so on.
ASTMSTANDARD | UNS NO. | KOREA/JAPANES | GERMAN | BRITISH | BELGIAN | FRENCH | ITALIAN | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KS/JIS Symbol | KS/JIS Numbe | Remarks | DIN Type | DIN Number | Materiral Number | Remarks | B.S Number | B.S Grade | Remarks | NBN Type | NBN Grade | Remarks | AFNOR Type | NF Number | Ramarks | UNI Type | UNI Number | Ramarks | ||
Grade A-1 | K02707 | STHA 410 / STB 410 | D3563 / G3461 | (30)(24) | St 45.8 | 17175 | 1.0405 | 3059 | 320 | -30 | D45 | 837 | -13 | TU A42-C | A49-213 | (6)(13) | C 18 | 5462 | -38 |
The permanent identifier A 210/A 210M is used to identify this tubing; the numeral that follows the identification denotes the technology adoption year or, in the event of modification, the date of the most recent revision. Steel ASME SA 210, carbon Boiler tubes, and ventilation systems, comprising safety extremities, arch & stay pipes, and superheater pipes, are all covered by seamless piping. It also includes minimal wall width, seamless medium-carbon steel, and boiler pipes.
The standards of ASTM A 520 shall augment and override those of this standard if ASME SA 210 Seamless Carbon Steel Boiler Tubes need to be utilized in installations compliant with ISO Guidelines for Boiler Installation.
Because of these variations in elemental composition, both grades have unique skills. As a result, they are employed in numerous applications in various industries and situations, depending on their area of expertise. The two types of ASTM A210 tubing differ in their ability to withstand corrosion. Both SA210 tube grades offer advantages and disadvantages with relation to application.
Due to their elemental composition (higher proportion of chromium), Superheat Tubes ASTM A210 have a relatively high hardness. Additionally, the ASTM A210 Boiler Pipes have good hardenability and may be welded utilizing a variety of accepted techniques. These ASTM a210 tubes are easily extended by 30%.
The production of our seamless pipes is tightly regulated and all of the pipes we stock have been fully tested to international standards to ensure we only supply the highest quality products.
Product name | Executive standard | Dimension (mm) | Steel code/ Steel grade |
---|---|---|---|
Black and Hot-dipped Zinc-coated Steel Pipes Seamless | ASTM A53 | 0.3-1200 x 1.0-150 | GR.A, GR.B, GR.C |
Seamless Carbon Steel for High Temperature Service | ASTM A106 | 10.3-1200 x 1.0-150 | GR.B, GR.C |
Seamless Cold-drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes | ASTM A179 | 10.3-426 x 1.0-36 | Low Carbon Steel |
Seamless Carbon Steel Boiler Tubes for High Pressure | ASTM A192 | 10.3-426 x 1.0-36 | Low Carbon Steel |
Seamless Cold-drawn Intermediate Alloy Steel Heat-exchanger and Condenser Tubes | ASTM A199 | 10.3-426 x 1.0-36 | T5, T22 |
Seamless Medium-carbon Steel Boiler and Superheater Tubes | ASTM A210 | 10.3-426 x 1.0-36 | A1, C |
Seamless Ferritic and Austenitic Alloy Steel Boiler, Superheater and Heat-exchanger Tubes | ASTM A213 | 10.3-426 x 1.0-36 | T5, T5b, T9 , T11, T22 ,T91 |
Seamless Carbon and Alloy Steel for Mechanical Tubing | ASTM A333 | 1/4"-42" x SCH20-XXS | Grade1 Gr. 3,Gr..6, Gr.8 , Gr. 9 |
Seamless Cold-drawn Carbon Steel Feedwater Heater Tubes | ASTM A556 | 10.3-426 x 1.0-36 | A2, B2 |
Round and shaped steel cold formed welded and seamless carbon steel structural pipe. | ASTM A500 | OD :10.3-820 x 0.8- 75 | Grade A, B, C, D |
Carbon and alloy steel mechanical tubing, either hot-finished or cold-finished | ASTM A519 | 10.3-426 x 1.0-36 | 1020, 1025, 4130, 4140 |
For seamless ferritic alloy-steel pipe for high-temperature service | ASTM A335 | 1/4"-42" x SCH20-XXS | A/SA 335 P1, P2, P11, P12, P15, P22, P91, P92, P122 |
Cold Drawn Seamless Mechanical Tubing (CDS) is a cold drawn 1018/1026 steel tube which offers uniform tolerances, enhanced machinability and increased strength and tolerances compared to hot-rolled products.
Cold drawn steel tube is with hot-rolled steel coil as raw material, and tandem cold rolling pickled to remove oxide scale, its finished rolling hard roll, rolling hard volumes due to the continuous cold deformation caused by cold hardening strength, hardness increased indicators declined tough plastic, stamping performance will deteriorate, which can only be used for simple deformation of the parts.
Rolling hard roll can be used as the raw material of the hot-dip galvanizing plant, hot dip galvanizing line set annealing line. Rolling hard roll weight is generally 6 to 13.5 tons, the coil diameter of 610mm.
Hot-rolled seamless steel pipe production base deformation process can be summarized as three stages: perforation, extension and finishing.
The main purpose of the perforation process is to become a solid round billet piercing hollow shell. Capillary in the specifications, accuracy and surface quality can not meet the requirements of the finished product, further improvements are needed to deform the metal through. The main purpose of the stretching machine is further reduced sectional view (main compression wall) for a larger axial extension, so that the capillary improved dimensional accuracy, surface quality and organizational performance.
After stretching machine rolled steel pipe shortage collectively need further molding mill in order to achieve the requirements of the finished pipe. Rolled steel due to pass in the method widely used in the production of seamless steel tubes.
So far, due to the method pass rolling steel can be divided into two categories: core pension without rolling rolling (hollow body rolling), and with the mandrel. Sizing machines, reducing mill and stretch reducing mill belonging to the hole without mandrel type continuous rolling mills are generally coffin. Its main purpose is to reduce the diameter of the deformation process or sizing get finished steel, the wall thickness of process control, can make thinning, thickening or nearly unchanged.
All the traditional hole-type rolling machine with mandrel belong to extend machine. The main purpose is to reduce the deformation process perforated capillary wall thickness and outer diameter roll passes in the deformation zone and the mandrel posed, for a larger axial extension. At the same time a certain improvement in the organization, performance, accuracy, surface quality.
Before cutting pipe and tubing
No matter the material, measure the diameter of the pipe or tube to be cut to ensure that you use the right-size tube cutter for the job. When determining how to make a straight cut, use a tape measure and a pencil or other writing instrument to mark on the surface where you want to cut. If possible, mark around the circumference of a pipe, especially when cutting with a handsaw. Ensure that a cut is as straight as possible by securing the pipe with a vise, clamp, miter box or even duct tape to keep the length from shifting out of place while cutting.
After cutting pipe and tubing
Geometrical inspection of steel pipes The outer diameter, wall thickness, bending and length of the steel pipe can be inspected on the inspection table with an outer caliper, a micrometer and a bending ruler, and a length tape measure.
Take seamless steel pipe as an example, there are some tolerances that affect quality. Noting this, and you will get a better pipe.
Weight tolerance
For pipe NPS 12 (DN300, 323.8mm) and under, the weight shall vary within -3.5% / +10%.
For pipe over NPS 12 (DN300, 323.8mm), the weight shall vary within -5% / +10%.
Pipe of NPS 4 (DN100, 114.3mm) and smaller may be weighed in convenient lots; pipe in sizes larger than NPS 4 shall be weighed separately.
Quantity tolerance
Normally mills take -10% to +10% tolerance, but TPMCSTEEL keeps ±3% variation.
Length tolerance
For Seamless pipe& tube, if definite cut lengths are ordered, the length shall vary within -0mm / +6mm.
Pipe types | Pipe Szie(mm) | Tolerances | |
---|---|---|---|
Hot rolled | OD | <50 | ±0.50mm |
≥50 | ±1% | ||
WT | <4 | ±12.5% | |
≥4-20 | +15%, -12.5% | ||
>20 | ±12.5% | ||
Cold drawn | OD | 6-10 | ±0.20mm |
10-30 | ±0.40mm | ||
30-50 | ±0.45 | ||
>50 | ±1% | ||
WT | <1 | ±0.15mm | |
>1-3 | + 15%, – 10% | ||
>3 | + 12.5%, – 10% |
Standard | Hot finished seamless tube | Cold flnished seamless tube | ||
---|---|---|---|---|
Out diameter (mm) | Tolerance | Out diameter (mm) | Tolerance | |
EN10216-1 | ≤100 | +/-0.75% (min.+/-0.5mm) | All | +/-0.5% |
EN10216-2 | (min. +/-0.30mm) | |||
DIN17175 | >100 | +/-0.90% | ||
GB/T 3087 | ≤460 | +/-0.75% (min.+/-0.5mm) | 10-30 | +/-0.40mm |
>30-50 | +/-0.45mm | |||
>50 | +/-1.0% | |||
GB/T 5310 GB/T 9948 GB/T 6479 | <57 | +/-0.40mm | ≤30 | +/-0.20mm |
57-325 | +/-0.75% | >30-50 | +/-0.30mm | |
>325-460 | +1%,-2mm | >50 | +/-0.8% | |
ASME SA-179M ASME SA-192M ASME SA-209M ASME SA-210M ASME SA-213M JIS G 3461 JIS G 3461 | ≤101.6 | +0.4, -0.8mm | <25.4 | +/-0.10mm |
>25.4-38.1 | +/-0.15mm | |||
>38.1-50.8 | +/-0.20mm | |||
101.6-190.5 | +0.4, -1.2mm | >50.8-63.5 | +/-0.25mm | |
>63.5-76.2 | +/-0.30mm | |||
>76.2 | +/-0.38mm | |||
ASME SA106 ASME SA335 | ≤48.3 | +/-0.40mm | ≤48.3 | +/-0.40mm |
48.3-114.3 | +/-0.79mm | |||
114.4-219.1 | +1.59, -0.79mm | |||
219.2-323.9 | +2.38, -0.79mm | >48.3 | +/-0.79mm | |
>324 | +/-1.0% |
Standard | Hot finished seamless tube | Cold flnished seamless tube | ||||
---|---|---|---|---|---|---|
DIN17175 | Out diameter OD(mm) | Wall thickness T(mm) | Tolerance | Out diameter (mm) | Wall Thickness T(mm) | Tolerance |
≤130 | S≤2Sn | +15%, -10% | -- | All | +/-10% (min. +/-0.2mm) |
|
2Sn +12.5%, -10% |
| |||||
S>4Sn | +-/9% | |||||
>130 | S≤0.05da | +17.5%, -12.5% | ||||
0.05da +/-12.5% |
| |||||
S>0.11da | +/-10% | |||||
EN 10216-1 EN 10216-2 | ≤219.1 | - | +/-12.5% (min.+/-0.4mm) |
|||
-- | T/D≤0.025 | +/-20% | ||||
0.025 +/-15% |
| |||||
0.05 +/-12.5% |
| |||||
0.1 +/-10% |
| |||||
GB/T 3087 | -- | ≤20 | +15%,-12.5% (min.+0.45, -0.35mm) | -- | 1.0-3.0 | +15%, -10% |
>20 | +/-12.5% | -- | >3 | +12.5%, -10% | ||
GB/T 5310 GB/T 9948 GB/T 6479 | -- | <4.0 | +15%,-10% (min.+0.48, -0.32mm) | -- | 2-3 | +12%,-10% |
4-20 | +12.5%,-10% | >3 | +/-10% | |||
>20 | +/-10% | |||||
ASME SA-179M ASME SA-192M ASME SA-209M ASME SA-210M ASME SA-231M JIS G 3461 JIS G 3462 | -- | 2.41-3.8 | +35%, -0% | ≤38.1 | -- | +20%,-0% |
3.8-4.6 | +33%,-0% | >38.1 | -- | 22%,-0% | ||
>4.6 | +28%,-0% | -- | -- | -- | ||
ASME SA-106 ASME SA-335 | -- | All | +/12.5% | All | +/-10% |
Note:
Positive material identification (PMI) testing is the examination of a material, usually a metallic alloy, to confirm the material is consistent with the user’s request.
Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).
Term | Symbol | Explanation |
---|---|---|
Cold-finished/hard (cold-finished as-drawn) | BK | No heat treatment after the last cold-forming process. The tubes therefore have only low deformability. |
Cold-finished/soft (lightly cold-worked) | BKW | After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits. |
Annealed | GBK | After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum. |
Normalized | NBK | The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum. |
There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.
Our packing can meet any needs of the customers.
Need to inquire about our products? Fill out the form below and our staff will be in touch!
Q: How long is your delivery time? A: The delivery time of customized products is generally 25 35 days, and non customized products are generally shipped within 24 hours after payment. Q: Do you provide samples? Is it free? A: If the value of the sample is low, we will provide it for free, but the freight needs to be paid by the customer. But for some high value samples, we need to charge a fee. Q: What are your payment terms? A: T/T 30% as the deposit,The balance payment is paid in full before shipment Q: What is the packaging and transportation form? A: Non steaming wooden box and iron frame packaging. Special packaging is available according to customer needs. The transportation is mainly by sea. Q: What is your minimum order quantity? A: There is no minimum order quantity requirement. Customized products are tailor made according to the drawings provided by the customer.