Our team is highly trained and experienced in servicing and producing all types of steel supplies. Need help or have a question?
sales@abrasionresistantpipe.com
Tel.: +8621-3378-0199
Our team is highly trained and experienced in servicing and producing all types of steel supplies. Need help or have a question?
sales@abrasionresistantpipe.com
Tel.: +8621-3378-0199
The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.Rare earth wear-resistant pipe is a method of casting as a whole in the parts with serious wear, such as elbows, reducers, water suction ports, etc., and then performing machining, especially in the parts where the wear is particularly significant on the outside of the elbow. The diameter is designed by changing the center of the circle, so that the parts with serious wear can be locally thickened, and various irregular switch pipe fittings can be produced according to various requirements to meet the design requirements, and the straight pipe is centrifugally cast. Second, the rare earth wear-resistant alloy contains Cr, Ni, Mo, W, V, Cu and other alloying elements. It not only has high hardness, but also has certain mechanical properties. It has good welding performance at room temperature and has Cutability and the possibility of on-site drilling, while also having some corrosion resistance. In the actual use process, good results have been achieved in the use of water slag pipelines in steel plants or in coal washing pipelines in coal preparation plants. Under the same conditions, compared with high manganese steel materials, its unit The wear is about 1/5 of that of high-manganese steel, and the service life is 4-5 times that of high-manganese steel. The elbow and branch pipe can be used together with the seamless pipe section, which is more convenient for installation and maintenance.
No. | Grade | C | Mn | Si | Cr | Ni | Mo | W | V | Nb | Cu | Re | N | S | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ZGCr20Mo3Ni3Re | 2.50/3 | 1.50/2 | 0.80/1.2 | 18.0/23 | 2.50/3 | √ | 1.20/1.5 | √ | ≤0.06 | ≤0.06 | ||||
2 | ZGCr28Mo3Ni3Re | 2.80/3.3 | 1.50/2 | 1.80/1.2 | 25.0/300 | 2.80/3.3 | √ | 1.80/2.3 | √ | ≤0.06 | ≤0.06 | ||||
3 | ZGCr15Mo3Re | 2.60/3.2 | 1.20/1.6 | 1.0/1.5 | 12.0/16 | √ | 2.50/3 | 1080/1.2 | √ | ≤0.04 | ≤0.05 | ||||
4 | ZGCr25Ni4Si2Re | 0.35/0.45 | 0.80/1.2 | 1.20/1.6 | 23.0/26 | 3.50/4.5 | √ | √ | ≤0.035 | ≤0.045 | |||||
5 | ZGCr15Mo2Re | 1.80/2.2 | 0.80/1.2 | 1.0/1.5 | 14.0/18 | √ | 2.0/2.5 | 0.80/1.2 | √ | ≤0.04 | ≤0.05 | ||||
6 | ZG40CrMnMoNiSiRe | 0.40/0.5 | 1.20/1.6 | 1.50/2 | 1.10/1.6 | 1.0/1.5 | √ | √ | √ | √ | ≤0.035 | ≤0.04 | |||
7 | ZG40Cr5Ni3MoVWRe | 0.35/0.45 | 0.80/1.2 | 1.20/1.6 | 23.0/26 | 2.50/3.5 | √ | √ | √ | √ | ≤0.045 | ≤0.055 | |||
8 | ZG50Cr18Ni4MoVWCuRe | 0.45/0.6 | 1.0/1.4 | 1.50/2 | 16.0/20 | 3.50/5 | √ | √ | √ | 0.40/0.6 | √ | ≤0.35 | ≤0.35 | ||
9 | ZGCr25Ni2Mo2WVCuRe | 0.40/0.6 | 0.80/1.2 | 1.20/1.6 | 23.0/v | 1.50/2.5 | √ | √ | √ | 0.20/0.4 | √ | ≤0.035 | ≤0.035 | ||
10 | ZG40Cr25Ni6MoWVCuRe | 0.35/0.45 | 1.2/1.6 | 1.50/2 | 23.0/26 | 5.0/7 | √ | √ | √ | √ | √ | √ | ≤0.35 | ≤0.045 | |
11 | ZG90CrMn13MoSiVRe | 0.40/1.3 | 11.0/14 | 0.30/0.8 | √ | √ | ≤0.04 | ≤0.04 | |||||||
12 | ZGCrMu10MoSiVRe | 1.0/1.2 | 8.0/11 | 0.30/0.8 | √ | √ | ≤0.04 | ≤0.04 | |||||||
13 | ZGW5Cr4Re | 2.50/3.5 | 1.5/1 | 0.50/1 | 35.0/4.5 | √ | √ | ≤0.10 | ≤0.15 | ||||||
14 | ZGCr25MoRe | 2.30/3 | 0.50/0.9 | 0.30/0.6 | 23.0/28 | √ | √ | ≤0.06 | ≤0.10 | ||||||
15 | ZGCr15MoRe | 3.0/3.5 | ≤1.0 | 0.15/1 | 15.0/18.6 | 2.80/3.3 | √ | ≤0.06 | ≤0.10 | ||||||
16 | ZG30CrMnSi | 0.27/0.33 | 1.30/1.5 | 1.20/1.5 | √ | √ | √ | ≤0.03 | ≤0.04 | ||||||
17 | ZG40CrNiRe | 0.28/0.43 | 1.10/1.4 | 0.80/1 | √ | √ | √ | ≤0.06 | ≤0.10 | ||||||
18 | ZG33Cr13Ni4Re | 0.30/0.35 | ≤0.80 | ≤0.60 | 12.0/14 | 4.0/4.5 | √ | √ | ≤0.06 | ≤0.10 | |||||
19 | ZG40CrSiN | 0.35/0.45 | 1.0/1.5 | 1.50/2 | √ | √ | ≤0.04 | ≤0.08 |
Medium-carbon alloy rare earth wear-resistant steel is a wear-resistant alloy material jointly developed by our factory and North Jiaotong University in the 1980s. After years of continuous improvement, this alloy material has been serialized and can meet various working conditions of power plants.
Power plant boilers have used medium carbon alloy rare earth wear-resistant steel pipe fittings for powder feeding elbows and ash and slag discharge pipes for nearly 20 years, and have won their wide recognition.
Medium-carbon alloy rare earth wear-resistant steel materials have the advantages that other wear-resistant materials cannot be used in general, such as accessories for some equipment of power plant coal grinding, pulverizing, ash removal, and slag discharge systems that cannot be manufactured by bimetallic materials. Such as slag scraper scraper, pulverized coal mixer, spiral pipe, etc., can all be made of this material, which brings great convenience to the operation, maintenance and management of the power plant.
Grade | C | Cr | Mn | Mo | Ni | Si | S | P | Re |
---|---|---|---|---|---|---|---|---|---|
ZG40CrMnMONiRe (JM6a) | 0.35-0.42 | 1-1.14 | 1-1.14 | 0.3-0.6 | 0.5-0.8 | 0.8-1.2 | ≤0.04 | ≤0.04 | ≤0.02 |
Grade | Tensile strength σb MPa | Impact ak j/cm2 | Hardness HRC |
---|---|---|---|
ZG40CrMnMoNiRe(JM6a) | ≥860 | 30 | ≥40 |
The composition design of medium carbon alloy rare earth wear-resistant steel adopts medium carbon multi-alloy system to ensure that the material maintains comprehensive performance indicators. Combining the characteristics of our country’s resources, this material adopts a small amount of multi-element alloy body, and adds FeV, FeNb, Cu and other multi-alloy elements on the basis of the original alloy materials FeCr, FeMn, Ni, Re, FeSi, etc., to ensure the performance of the product.
The medium carbon alloy rare earth wear-resistant steel has high wear resistance, and the rare earth wear-resistant alloy steel has strong wear resistance. After adding FeV, FeNb, and Cu, the metallographic structure of the material has changed. The metallographic structure is: Lath Martensite + Bainite. The grains are finer, the strength is higher, the plasticity is stronger, and the metal matrix is further passivated, so that the wear resistance of the original material has been improved.
Medium carbon alloy rare earth wear-resistant steel has high temperature resistance, strong corrosion resistance and improved wear resistance. The content of Ni and Cr elements in the alloy directly determines the temperature resistance of the material. The content of Cr element and Cu element determines the corrosion resistance of the material. The reasonable combination of these elements makes the new rare earth wear-resistant alloy material have several properties at the same time, such as high wear resistance and high wear resistance. It has excellent corrosion resistance, so it can adapt to the use of various harsh working conditions.
The medium carbon alloy rare earth wear-resistant steel has advanced technology and stable performance. On the basis of centrifugal casting and resin sand molding, our factory has introduced a new EPC lost foam vacuum suction casting process to make molds according to product structure, application, use method, and quantity. High precision, uniform material structure and stable performance, especially for special-shaped parts such as wear-resistant spiral pipes, pulverized coal mixers, fork pipes, import and export hoppers, round and round joints, cone buckets, etc., the wall thickness is uniform.
The medium carbon alloy rare earth wear-resistant steel has good welding performance, can be cut, and can be butt welded with low carbon steel. It is suitable for operation, construction, installation and use in various places and environments.
The hardenability of medium carbon alloy rare earth wear-resistant steel is good. Because the wear-resistant alloy steel material is the same inside and outside, under the condition of air quenching, the HRC difference between the inner and outer surfaces is 1 to 2, which ensures the wear-resistant performance.
Disadvantages: The disadvantage of rare earth wear-resistant alloy steel is that it has low anti-collision ability, and it should be handled with care during transportation and installation.
The wear and tear of rare earth alloy is a phenomenon of material loss caused by relative motion between objects. Rare earth wear-resistant alloy steel tube wear-resistant materials can resist wear and prolong the life of the product. Mainly divided into single metal pipe and composite pipe. According to the shape can be divided into straight pipe, elbow, tee, four-pass, reducer, Fangyuan section and other special-shaped tubes.
Surface Quality requirements: the internal and external surface of the pipeline should be smooth and smooth, no burrs, burrs, sticky sand, more meat or lack of meat, no cracks, loose, stomata or bubbles.
Rare earth wear-resistant pipe, is in the area of serious wear, such as elbow, reducer, suction nozzle, such as the use of the model as a whole casting, especially in the outside of the elbow wear particularly significant parts, the external diameter of the method to change the center of the design, so that the wear serious parts of the local thickening, but also according to various requirements, Make a variety of irregular shaped pipe fittings to meet the design requirements, straight pipe is centrifugal casting. Second, the rare earth wear-resistant alloy containing CR, Ni, Mo, W, V, Cu and many other alloying elements, it not only has a high hardness, but also has a certain mechanical properties, at room temperature with good welding performance, and has the possibility of cutting and on-site openings, but also has a certain corrosion resistance.
In the actual use of the process, whether it is in the steel slag pipe, or in the coal preparation plant, such as the use of washing pipes have achieved very good results, in the same conditions compared with high manganese steel, the unit wear is about 1/5 of the higher manganese steel, the service life is high manganese steel 4-5 times, elbow and branch pipe can be used with seamless pipe fittings, installation, maintenance more convenient.
High strength and low alloy rare earth heat-resisting and wear-resisting steel pipe parts are suitable for coal conveying, powder feeding, ash discharging pipeline and coal preparation plant transportation pipeline in thermal power plant boiler system.
temperature ℃ | Abrasive wearmg/g | hardness HRC | Tensile strengthN/mm² | Impact toughness J/cm² |
---|---|---|---|---|
≤300 | 0.021 | ≥63 | 890 | 5 |
≤350 | 0.033 | ≥56 | 910 | 6 |
≤350 | 0.042 | ≥45 | 910 | 6 |
≤400 | 0.069 | ≥42 | 960 | 6 |
≤400 | 0.039 | ≥48 | 920 | 7 |
≤400 | 0.064 | ≥40 | 950 | 7 |
≤400 | 0.069 | ≥36 | 910 | 8 |
≤400 | 0.036 | ≥42 | 1040 | 8.5-10 |
Rare earth alloy wear-resistant pipe
Rare earth alloy wear-resistant pipe is used for pneumatic, pumping slurry and other material conveying pipes. It has the characteristics of fast flow rate and large flow rate.
Compared with high manganese steel materials under the same conditions, the unit wear of rare earth alloy is about 1/3 that of high manganese steel, and its service life is 2-3 times that of high manganese steel.
Because R alpha composition and structure characteristics of carbide , and the content of solid solution to Cr matrix has strong heat resistance, corrosion resistance, and add the Mo in the high temperature or corrosive environment shows the performance of corrosion resistance, abrasion resistance, add a certain amount of rare earths, giving the inner structure of the alloy is more compact, surface to form a layer of protective film, prevent seepage of carbon. Increased wear resistance, corrosion resistance; Containing a certain amount of boron makes the alloy hardness , which can not was achieved by carburizing. At the same time, containing a certain amount of Mn increases the fatigue resistance of the alloy , so that the wear resistance of the alloy is better than that of high chromium alloy and rare earth alloy.
Alloy wear-resistant casting pipe can bear the pressure of 6 ㎏ / cm2, can be applied to gas conveying high pressure pipeline, for external use high-quality steel pipe or is made of high qualified steel plate, hot pressing push system, through the good welding, makes the elbow in more than 10 kg/cm2 pressure is no problem, won’t appear because of local air leakage, diversion phenomenon of material.
Such as bimetallic materials can not be manufactured in the power plant coal grinding, pulverizing, ash removal, slag discharge system of some equipment accessories. Such as dredge scraper, pulverized coal mixer, spiral tube, etc., can be made of this material, which brings great convenience to power plant operation, maintenance and management.
On the basis of centrifugal casting and resin sand molding, the company introduced a new EPC lost foam vacuum suction casting process to make molds according to product structure, application, usage method and quantity, with high dimensional accuracy, uniform material organization and stable performance, especially for wear-resistant Spiral pipes, pulverized coal mixers, fork pipes, import and export hoppers, round and round joints, cone buckets and other special-shaped parts are cast as a whole, and the wall thickness is uniform.
The disadvantage of rare earth wear-resistant alloy steel is its low impact resistance, so it should be carefully handled during transportation and installation.